Enterprise Ontology driven Software Generation

Jan L.G. Dietz

Keynote Lecture ICSOFT 2012
Outline

Model Driven Engineering
System Design (τ-theory)
Enterprise Ontology (ψ-theory)
DEMOP
Conclusions
Outline

Model Driven Engineering

System Design (τ-theory)

Enterprise Ontology (ψ-theory)

DEMOP

Conclusions
What is Model Driven Engineering?

Model-driven engineering (MDE) is a software development methodology which focuses on creating and exploiting domain models (that is abstract representations of the knowledge and activities that govern a particular application domain), rather than on the computing (or algorithmic) concepts.

The MDE approach is meant to increase productivity by
• maximizing compatibility between systems (via reuse of standardized models)
• simplifying the process of design (via models of recurring design patterns in the application domain), and
• promoting communication between individuals and teams working on the system (via a standardization of the terminology and the best practices used in the application domain).
How must MDE be understood?

- Regardless the way in which you apply MDE, you have to cope with the intrinsic characteristics of system design.

- So, let us have a look at what system design is about, as conceived in the \(\tau \)-theory.

- To start with, let us recognize the important and fundamental differences between the function perspective and the construction perspective on systems.
Outline

Model Driven Engineering

System Design (τ-theory)

Enterprise Ontology (ψ-theory)

DEMOP

Conclusions
The τ-theory

The Greek letter τ is pronounced as TAO, standing for Technology, Architecture, and Ontology.

The τ-theory is a theory about the design of systems (of any kind). It explains the design process and it clarifies the notions of technology, architecture and ontology in the design process.

The τ-theory is rooted in systemics, ontology, and design theory.

An important notion in the τ-theory is the notion of system category (physical, biological, social, etc.), which is determined by the nature of the elements and their interaction. Only systems in the same category can interoperate.
About construction (1)

The *construction* of a system is an *objective* notion. Therefore, one can rightly say that a system is its construction.

Because constructional models of systems show their construction ‘openly’, they are commonly called *white-box* models.

The *ontological* model of a system is the construction model that is fully independent of the system’s implementation. Therefore, it is said to constitute the *essence* of the system.

Examples of white-box models:
- The DEMO Process Model of a business process
- A BPMN model of a workflow
- A UML Activity Diagram of a software system
About construction (2)

construction: the components and their interactions

operation: the manifestation of the construction in the course of time

constructional (de)composition

car
About function (1)

The *function* of a system is a *subjective* notion. Function is *not* a system property but a relationship between a system and a stakeholder. Consequently, a system may ‘have’ as many functions as there are stakeholders.

Note: regarding artefacts, one may speak of their intended function (intended by the designer).

Because functional models of systems fully hide their construction, they are commonly called *black-box* models.

Examples of black-box models:
A value-based model of a business process
An IDEF0 model of a workflow
A DFD of a software system
About function (2)

The driver's perspective

function: relationship between input and output

behavior: the manifestation of the function in the course of time

functional (de)composition

car
The Generic System Development Process

- Architecture
- Functional principles
- Constructional principles
- Function
- Analysis
- Design
- Synthesis
- Iteration
- Constructional requirements
- Engineering
The persistent errors in software engineering

Errors of type 1: missing or irrelevant requirements in the OS function

Errors of type 2: missing or irrelevant functions, as brought about by the OS construction

Errors of type 3: inconsistency between constructional models
Strengths and weaknesses of MDE

• **STRENGTHS**
 - It offers the possibility to generate software from high-level models.

• **WEAKNESSES**
 - The models produced during the system design process are not formally defined. Hence, it is impossible to verify them, that is to check them against each other.
 - Because of the using system models (domain models) are not truly ontological, it is impossible to validate the requirements, nor the resulting system comprehensively.

• **IMPROVEMENTS**
 - The weaknesses can be removed to a large extent by putting MDE in the framework of the \(\tau \)-theory.
Outline

Model Driven Engineering

System Design (τ-theory)

Enterprise Ontology (ψ-theory)

DEMOP

Conclusions
The \(\psi \)-theory

The Greek letter \(\psi \) is pronounced as PSI, standing for Performance in Social Interaction.

The \(\psi \)-theory is a theory about the construction and operation of organizations. It explains the operating principle of organizations and it defines the notion of enterprise ontology.

The \(\psi \)-theory is rooted in semiotics, language philosophy, systemics, and social action theory.
The ψ-theory (1)

- The *operating principle* of organizations is that *human beings* enter into and comply with *commitments* regarding the production of things. They do so in *communication*, and against a shared background of cultural norms and values.

- Commitments occur in processes that follow the *universal transaction process*. This is a structure of *coordination acts*, concerning one *production fact*, between two actors. One is the *initiator* (consumer); the other one is the *executor* (producer).

- An *organization* is a network of actors and transactions. Every actor has a particular *authority*, assigned on the basis of *competence*. Actors are assumed to exercise their authority with *responsibility*.
Examples of coordination acts

Alicia: I'd like to have a bouquet of red tulips

Alicia : request : **Celestine** : order 387 is fulfilled

Celestine: Just a moment

Celestine : promise : **Alicia** : order 387 is fulfilled

Celestine: Here you are

Celestine : state : **Alicia** : order 387 is fulfilled

Alicia: Thanks

Alicia : accept : **Celestine** : order 387 is fulfilled
The ψ-theory (2)

- **performa**
 - (social understanding)
 - expose commitment
 - informa
 - (cognitive understanding)
 - formulate thought
 - forma
 - (notational understanding)
 - utter sentence
 - medium
 - signals

- evoke commitment
 - interpret thought
 - perceive sentence
 - signals
In the **order phase**, the actors discuss the *fact to be produced*, and try to come to agreement.

In the **execution phase**, the executor *produces some fact*.

In the **result phase**, the actors discuss the *fact that has been produced*, and try to come to agreement.

Asking for flowers
- Booking a hotel room
- Applying for membership
- Booking a car rental

Creating
- Deciding
- Judging

Receiving the flowers
- Having stayed in the hotel
- Having become member
- Having rented a car
The universal transaction process

The ψ-theory
Non-verbal and tacit communication

Alicia: *I’d like to have a bouquet of red tulips*

Alicia : request : Celestine : order 387 is fulfilled

Celestine : just a moment

Celestine : promise : Alicia : order 387 is fulfilled

Celestine : handing over the bouquet >

Celestine : state : Alicia : order 387 is fulfilled

Alicia : accept : Celestine : order 387 is fulfilled
The building block of organizations

Every (elementary) actor role is the executor of exactly one transaction kind, and initiator of 0, 1 or more transaction kinds.

Next to the *process* interpretation of the transaction symbol, there is the *state* interpretation:

it represents a *production bank* (containing production facts) and a *coordination bank* (containing coordination facts)
A business process is a tree of transactions

Note. Component transactions may also be carried out in parallel
The ψ-theory (3)

The three human abilities also apply to production:

Performa

The ability to perform original production acts, such as to create (manufacture, transport, observe), decide, and judge.

Informa

The ability to perform informational production acts, such as to remember, recall, and compute.

Forma

The ability to perform documental production acts, such as to store, retrieve, transmit, and copy sentences and documents.
The essential model (1)

B-organization

I-organization

D-organization

The essential model of an enterprise is the ontological model of its B-organization.
The essential model (2)

PROCESS
- business processes
- business events
- business rules

PRODUCT
- business objects
- business facts
- work instructions

actors
transactions

FM
Outline

Model Driven Engineering
System Design (τ-theory)
Enterprise Ontology (ψ-theory)

DEMOP

Conclusions
DEMO: Design and Engineering Methodology for Organizations

DEMO is the pioneering methodology of Enterprise Engineering.

The *paradigm* of Enterprise Engineering is that enterprises are *designed systems*, and thus can be re-designed and re-engineered in order to bring about changes as and when needed.

Every Enterprise Information System is *some* implementation of the essential model (DEMO model) of *some* enterprise.

DEMOP is a DEMO based generator for Enterprise Information Systems, developed by *Steven van Kervel* (director of ForMetis)
DEMOP - modeling mode

- Start
- Edit model
- Validate model
- DEMOL (XML) model repository
- Final model
- Parsing & building
- DEMOP
- DEMO model
DEMOP - production mode

- DMOL (XML) model repository
 - generate instance
- DMOL (XML) production instances
 - parsing & building & aggregation
- DEMO model
 - rendering
 - DEMO Processor
 - operational actors
 - start
DEMOP offers real-time (and interactive) simulation of the B-organization model (+ selected I- and D-transactions).
Outline

Model Driven Engineering

System Design (τ-theory)

Enterprise Ontology (ψ-theory)

DEMOP

Conclusions
Conclusions

• Current approaches to MDE are quite error prone.

• Because of its being fully rooted in the ψ-theory, DEMO delivers coherent, consistent, comprehensive, and concise ‘domain models’.

• DEMOP eliminates three crucial kinds of design errors:
 • Function design errors
 • Construction design errors
 • Implementation design errors

• DEMOP shows what the next generation EIS (including ERP and WFM systems) could be.
My TU Delft address: j.l.g.dietz@tudelft.nl
My Sapio address: jan.dietz@sapio.nl
The CIAO! Network: www.ciaonetwork.org
The EE Institute: www.ee-institute.com